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Glioblastoma multiforme (GBM) is a high recidivism and mortality characterized subtype of gliomas. 

According to the WHO, it belongs to the Grade IV brain cancers. It is highly invasive and can infiltrate 

cerebral tissue, therefore, the complete resection of the tumor is difficult. GBM tumor is removed 

by surgery but it relapses in 90% of cases, 6 to 7 months after treatment due to radiotherapy 

resistance. Indeed, patients affected with GBM only survive 6 months without treatment whereas 

with Temozolomide (TMZ) chemotherapy combined with radiotherapy it lengthens their overall 

survival to 6 additional months [1-7]. TMZ is an alkylating agent, which forms an active metabolite 

called MTIC in vivo. This latter affects DNA replication, by methylating guanines causing double-

strand DNA breaks then cell apoptosis [3]. Another option is the FDA approved Gliadel® wafer that 

allows the sustainable release of the antineoplasic agent Carmustine® close to the resection cavity. 

Gliadel® associated to radiotherapy and TMZ increases the overall survival from 1 to 2 years for 

GBM patients, however this therapy has additional side effects [8-9]. To overcome these hurdles 

other systems have been investigated like β-Glucan or Silk Fibroin scaffolds imbedding 

chemoattractants. These systems are designed to concentrate and trap GBM cells into the scaffold 

in the resection cavity [10-13].  

The current project is based on a new injectable nanocomposite hydrogel where a protein is 

encapsulated in polymeric nanoparticles (NPs). PLGA NPs are prepared via non-toxic and 

biocompatible solvents [11, 35- 38] and are incorporated into nanocomposite hydrogels to achieve 

a controlled release of an active 2 compound. Such matrices have been developed in tissue 

engineering applications such as tissue regeneration [16-32].  

The therapeutic protein used is a bone morphogenic protein 4(BMP-4), which is involved in 

neurogenesis. Herein, a differentiating strategy is applied to lead cancer cells and more precisely 

cancer stem cells to acquire a less aggressive phenotype that may increase their radiotherapy 

sensitivity [14-15, 37-38].  

 

Since brain microenvironment is composed of a hyaluronic acid (HA) enriched extracellular matrix 

(ECM), we expect to develop an injectable, biocompatible, bioadhesive and biodegradable HA 

scaffold. HA is thus a good candidate since it possesses all those functionalities [16-23].  

 

Finally, the most challenging part of this innovative strategy is the encapsulation of the BMP protein 

and tuning its delivery in situ. The encapsulation yield and release from hydrogel will be studied in 

vitro to obtain a proof of concept regarding cytotoxicity and efficiency on NIH3T3 and U87MG cell 

line and on primary patient cells. During this work, optimization of the formulation process and 

physico-chemical characterizations such as DLS, rheology, mechanical properties tests and stability 

studies such as DSC and TGA will be performed [23-30., 39-40]. Bioperformance evaluation of our 

device on preclinical models is also expected. [44-46]. 
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