Metrology for high throughput characterisation of nanowire energy harvesting devices

Zhi Li¹, François Piquemal², Richard Koops³, Petr Klapetek⁴, Luca Boarino⁵, Uwe Brand¹, Noelle Gogneau⁶, Jacob Larsen⁷, Janusz Fidelus⁸, Hele Savin ⁹, Markys Cain¹⁰, Graham Cross¹¹, Chris Schwalb¹², Erwin Peiner¹³, Teodor Gotszalk¹⁴, Javier Rodríguez Viejo¹⁵, Didier Pellerin¹⁶

¹Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany ²Laboratoire national de métrologie et d'essais, 29 Avenue Roger Hennequin, 78197, Trappes Cedex, France

³VSL B.V., Thijsseweg 11, 2629 JA Delft, The Netherlands
⁴Czech Metrology Institute, Okružní 31, 638 00 Brno, Czech Republic
⁵Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
⁶C2N-CNRS, Université Paris Saclay, 91120 Palaiseau, France
⁷DFM A/S, Kogle Allé 5, DK-2970 Hørsholm, Denmark
⁸GUM, Główny Urząd Miar, ul. Elektoralna 2, 00139 Warszawa, Poland
⁹Aalto University, Department of Electronics and Nanoengineering, Tietotie 3, 02150 Espoo, Finland
¹⁰Electrosciences Ltd, 1 Osborn Road, Farnham, Surrey GU9 9QT, United Kingdom
¹¹CRANN Institute, School of Physics, Trinity College Dublin, Dublin 2, Ireland
¹²GETec Microscopy GmbH, 1220 Vienna, Austria
¹³Institute of Semiconductor Technology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
¹⁴Wroclaw University of Technology, ul. Janiszewskiego 32/46, Wrocław, 50-372, Poland
¹⁵Physics department. Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

¹⁶Scientec/CSInstruments, 91940 Les Ulis, France

Energy harvesting from renewable sources such as solar, heat and movement is a possible solution to create small amounts of electrical energy in areas which are difficult to access. Moreover, energy harvesting devices have much potential to address our energy problems. Nanowire (NW) based energy harvesting systems have achieved encouraging progress in the past years, but due to nanometre dimensions of the wires and large size up to several square metres of the devices, they also bring challenges for testing and characterisation. Nowadays, average properties of energy harvesting devices can be well measured, but a quantitative link and correlation between the performance of single NWs and that of the overall device is lacking.

To overcome these critical problems and to further promote the development and applications of NW energy harvesting devices, we have therefore initiated this EMPIR project entitled "Metrology for nanowire energy harvesting devices". This research project is supported by the European Union and is funded within the scope of the European Metrology Programme for Innovation and Research (EMPIR). This project runs from September 2020 to August 2023. Eight national metrology institutes and 7 international academic and industrial partners are involved in this project, which aims to develop reliable and high throughput metrology for the quality control of NW energy harvesting systems, especially for high throughput nanodimensional, eletrical, nanomechanical and thermoelectrical characterisation of NWs down to 50 nm diameter,

These objectives will require large-scale approaches that are beyond the capabilities of individual research labs and National Metrology Institutes. To enhance the impact of the research, the involvement of the appropriate user community such as industry, standardization and regulatory bodies is intended, both prior to and during methodology development.

Acknowledgement

This research project is supported by the European Union and is funded within the scope of the European Metrology Programme for Innovation and Research (EMPIR) project 19ENG05 NanoWires entitled 'High throughput metrology for nanowire energy harvesting devices' (<u>https://www.ptb.de/empir2020/%20nanowires/home/</u>).