The role of surface oxidation on the gas sensing properties of 2D layered chalcogenides: the evidence of 2D/2D α-SnO₂/SnSe₂ heterostructures V. Paolucci¹, J. De Santis¹, G. Di Iorio¹, G. Giorgi^{2,3}, L. Lozzi⁴ and C. Cantalini¹ ¹ Department of Industrial and Information Engineering and Economics, University of L'Aquila, Italy ² Department of Civil and Environmental Engineering (DICA), Università Degli Studi di Perugia, Italy ³ CNR-SCITEC, Perugia, 06123, Italy ⁴ Department of Physical and Chemical Sciences, University of L'Aquila, Italy Corresponding author: V. Paolucci valentina.paolucci2@univag.it Despite their widespread potential in gas sensing applications, 2D exfoliated metal dichalcogenides (MDs) show poor chemical stability under dry/wet conditions at operating temperatures (OTs) ranging from 25°C to 150°C, that limits their practical exploitation in sensing applications $^{[1-3]}$. Aim of this work is to focus on new perspectives to passivate material surface preventing further degradation, with the practical case-study of gas sensing properties of 2D $SnO_2/SnSe_2$ heterostructures obtained by controlled oxidation of exfoliated $SnSe_2$ flakes. We report that, provided suitable thermal treatments, it is possible to synthesize a new class of 2D heterostructures comprising amorphous SnO_2 (α - SnO_2) metal oxide grown over pristine few layered $SnSe_2$ MDs. We demonstrated by means of HRTEM, XPS and XRD techniques that annealing in static air at 200°C, i.e. below the crystallization temperature of SnO₂, and different times ranging from 2h to 170h induces surface oxidation of SnSe₂ leading to the formation of a self-assembled *a*-SnO₂ skin layer over the underling 2D-SnSe₂ flakes, with excellent gas sensing properties to oxidizing and reducing gases. Sensing tests were carried out on a-SnO₂/SnSe₂ at an OT of 100°C to NO₂ and H₂ gases and different relative humidities ranging from 40% to 80% RH, also investigating the long-term stability of the response over one year. The gas sensing responses of a-SnO₂/SnSe₂ heterostructure to increasing concentrations of NO₂ in the range 400 ppb-1.5 ppm and 40% RH show response to NO₂ with corresponding limits of detection of 400 ppb. Electrical tests in the presence of different amount of humidity highlight that water vapor improves sensor's response to NO₂. On the contrary, while the detection limit to H₂ is found to be 5 ppm, the effect of humidity is to hinder the response, suggesting a competitive mechanism. These results explain that it is possible by suitable thermal treatment, to induce a self-terminating passivation process leading to an amorphous a-SnO $_2$ oxide over SnSe $_2$ which prevent the underlying 2D – SnSe $_2$ structure for further oxidation and achieve excellent gas sensing responses. - [1] F. Perrozzi, et al, Sensors Actuators, B Chem. 2017, 243, 812. - [2] V. Paolucci, et al, Nanomaterials 2019, 9, 1363. - [3] V. Paolucci, et al, ACS Appl. Mater. Interfaces 2020, 12, 34362.